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o Opening Comment

s .

¥ # ° In making DNAPL site remediation decisions, we have the
option of defaulting to:

® ° the certainty & comfort of mandated, prescriptive,
- conservative endpoints (e.g., MCL) that, in most cases,
=® may not be technically achievable at a reasonable cost
Y and within meaningful timelines,

5@ 1nstead of considering as alternatives,

* risk-based, technically achievable, cost-effective
endpoints that allow some contamination to be left at
the site, but with the obligation for long-term site
stewardship, and might have significant public

perception concerns, in spite of institutional and other
controls.
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i o In-situ Flushing: Technical Basis:
2#® Legacy of Enhanced Oil Recovery Technologies

:® Addition of “modifiers” to injected fluids for

= ® enhanced solubilization, mobilization & desorption:

— 9

=-® - Reduction in IFT (Total Trapping Number)

2. ® ° Density modification for mobility control

5 & ° modify DNAPL (e.g., Pennell et al., 2000, US Patent:

9 6,099,206)

! @ ° modify groundwater (e.g., Miller, 2001; US Patents:
6,190,092: 6,261,029)

e Reduction in Viscosity (temp??)

* Reduction in wettability (of solid matrix or NAPL)

* Significantly increase desorption &
mass transfer rate constants

BPPR"



SO0

UNIVERSITY

Types of Source Zones

LNAPLs & DNAPLs

Fuel hydrocarbons (gasoline, diesel,
kerosene, aviation fuels)

Transformer oils

Chlorinated & brominated solvents
Coal/oil tars

Creosotes

Also used for sources with metals
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Complexity of Field Settings

— Size of Source Zone

* Small (e.g., dry cleaner & gasoline station): tens of m?
* Intermediate (e.g., manufacturing sites): 100’s m?
* Large (e.g., disposal sites): 1000’s m?

Hydrogeology

* Unconfined, mildly heterogeneous (6%, .~ 0.2)

* Unconfined, moderately heterogeneous (62, . ~ 1)

» Unconfined, highly heterogeneous (62, . ~ 2)

IntT
* Fractured media & karst

* Sediments (streams, rivers, estuaries)???

T is the “reactive travel time”
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Cosolvents (e.g., alcohols, ethyl lactate,
ketones, ?7?7)

Surfactants (including food-grade)

“Sugars” (e.g., cyclodextrins)

“DOC” (e.g., “humics™)

Organic acids & other “ligands” (for metals)
Polymers (e.g., viscosity modifiers)

Salts (injected fluid density modifiers)
Foam-control additives & air (?7?)

“Heat”??
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Extensive lab testing; scientific basis is well
established

Successful field testing for remediation of LNAPL
& DNAPL sources in unconfined aquifers with
mild to moderate heterogeneity (70-1007% mass
depletion reported)

Simple & sophisticated numerical and “analytical”
models available for scientific uses and site
remediation design uses

Several commercial applications, but not yet
widely adopted at DNAPL sites
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Examples of Recent Papers
on In-Situ Flushing
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REMEDIATION 26 (1): 73-84

Oostrom M, Dane JH, Wietsma TW. 2006. A review of multi-dimensional, multi-fluid
intermediate-scale experiments: Nonaqueous phase liquid dissolution and enhanced
remediation VADOSE ZONE JOURNAL 5 (2): 570-598 MAY 2006

Christ JA, Ramsburg CA, Abriola LM, Pennell KD, Loffler FE 2005 Coupling aggressive mass
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Lee M, Kang H, Do W 2005 Application of nonionic surfactant-enhanced in situ flushing to a
diesel contaminated site WATER RESEARCH 39 (1): 139-146

Martel R, Foy S, Saumure L, et al. 2005.Polychlorinated biphenyl (PCB) recovery under a
building with an in situ technology using micellar solutions, CANADIAN GEOTECHNICAL
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Saichek RE, Reddy KR. 2005. Electrokinetically enhanced remediation of hydrophobic organic
compounds in soils: A review CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND
TECHNOLOGY 35 (2): 115-192
Tick GR, Lourenso F, Wood AL, et al. 2005. Pilot-scale demonstration of cyclodextrin as a
solubility-enhancement agent for remediation of a tetrachloroethene-contaminated
aquifer ENVIRONMENTAL SCIENCE & TECHNOLOGY 37 (24): 5829-5834
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solubilization of a residual DNAPL contamination JOURNAL OF CONTAMINANT
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In-Situ Flushing Case Studies
¢ )
Generation-1 Technology
o
2.0 I Sirw Flushing Case Stadies . 0 0 0 0 0 0 L 5
2.1 Alameda Point INawval Awr Statwon Site, Alameda, ©A  © _ . . . . . . . o . L o ool 5
2.2 Bachman Foad Fesidential Wells Remediation Project, Ann Arbor, MMachigan . . . . .. (o]
2.3 Baosurfactant Flushing and Enhanced Remediation: fm Siry Biostuimulation Strategwy for
Intractable Shoreline Sediment Contammated withh Dhiesel Fuel, Awvstralia . . . . . .. . . . r
2.4 Boston Logan Adrport Area. Boston, Wlassachuasetts . . 0 0 0 0 0 0 oL B
2.5 Camp Lejeune Surfactant-Enhanced DINAPT. Remowval, Narnne Corps Base Camgp
Lejeune. North Carolima o - . . . . L L L o o e e e e e e e e e e e e e B
2.6 Dover AFB. Test Cell 3 Cosolvent Solubilization. Dowver. Delaware . . . . . . . _ . _ . _ _. o
2.7 Sages. Jacksonwille, Florada . . . . . . . L . L L L e e e e e e e e e e e e e e e e e e e 10
2.8 Gulf Power, Lyvnn Haven, Florida . . . . _ . . L L e e e e 11
2.9 Hill AFE Operable Ut {(OTLT) 2 Full-Scale Surfactant Flood, Lavton, Utalh . . . . . . .. 11
210 Howard University — The Use of Pervaporation and Ultrafiltration Membranes for the
Separation., Fecovery. and Reuse of Surfactant Solutions, Washingron, T . 0 . . 12
211 Tvew Environmental Services — Clark Onl Company. Fredericton, ™WNew Brunswick,
Canada . . e e e s 13
212 Tvey Environmental Services — Commercial/Residential Site, Fredericton, TNew
Branswick., Canada . . . . L L L e e e e e e e e e e e e e e e 13
2.13 McocClellan AFB — Surfactant/ Cosolvent Enhanced Subsurface Remediation of
DINAPLs. IWicClellan AFB, Califormia . . . . . . o . . . o e e e e e e e e e e 14
214 OK Tool Area at Savage Well Site. Hillsborough County, INew Hampsire - . . . . _ . 15
2.15 Mlillican Field, Pearl Harbor, Famwwatl - . - . o - 0 o o ot o oe e e et e e e e e e e e e et e e 15
216 Strategic Environment Research and Dewvelopment Program (SERDP) - Evaluation of
Surfactants for the Enhancement of PCB Dechlorination in Soils and Seduiments,
Avlanta, GeOrELIa © . . . . . o i e e e e e e e e e e e e e e e e e e e e 1a
217 1T 5. Department of Energy (IDOE) Paducah Gaseous Diffusion Plant, Paducah,
Eentuckw . L e e e e e e e e e e e e e e e e e e e e e 17

* Lauren Strbak, July 2000
http://clu-in.org/download/studentpapers/strbak_flushing.pdf
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Why 1sn’t In-Situ Flushing Used
More at DNAPL sites?

e No champions in regulatory agencies
e Early concerns about injecting “modifiers”
into aquifers for remediation

e Early design/implementation problems

e Misperceptions about "success"

e Misunderstandings about "cost"

e Concerns about "efficiency"

e Lack of large-scale applications @ DNAPL sites
w/adequate performance monitoring

e Not enough "committed" technology vendors

* Gen-2 Innovations not yet used at many DNAPL sites?
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Second Generation Surfactant Flushing™:
Five Key Innovations

 Well Placement and Screening
e Surfactant Formulation
* Pore Volumes Injected

- Manifolding of Injection & Extraction
Wells

« Surfactant Disposal

* Shiau et al., May 2006. Recent advances in surfactant-enhanced aquifer remediation:
The Golden, OK case study. Battelle Conf., Monterey, CA.
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DNAPL Source Remediation Goals*
EPA Groundwater Task Force, 2004

« Site owners: Cleanup to drinking water standards (e.g.,
MCLs) not realistic, but are rarely allowed to use
alternative goals. Benefits of source mass depletion are
outweighed by disadvantages.

« Technology developers: Significant mass depletion
possible, but stringent cleanup goals inhibit technology
use. Alternative performance goals are more relevant.

- Site managers: Alternative goals cannot be applied
because source zone has not been reliably delineated from
plume. No accepted performance measures to determine
effectiveness. Concerns about uncertain reliability &
long-term costs of alternative goals.

* http://gwtf.cluin.gov
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g Performance metrics included in evaluation:
~ 9 NATA
e . Impact to DNAPL source: » Adverse remedial impacts
B Reductions in DNAPL mass DNAPL mobilization

— 2 Reductions in soil m===)Adverse changes in 2ndry gw
) 2 concentrations quality

_ .‘ Reductions in source zone Poor attenuation of toxic

= lifespan byproducts

= &

_= N [mpacf to p;‘ume_' . ”‘?’?p."&fﬂ&ﬂfﬂﬁﬂﬂ

| Reductions in concentrations considerations:

_ Achievement of MCLs Unit cost (volume/mass)

.‘ Reduction in mass Treatment duration

flux/discharge m==) Occurrence of rebound

=8 Changes in plume Achievement of site closure

5 4 stability/growth

=

Slide courtesy of Carmen Lebron, NFESC (2006)
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DNAPL Source Remediation:
In-Situ Flushing Field Studies
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1
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Source Mass Reduction
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Decrease in Mass Flux:

1(1.3%)

1(1.3%)
2 (2.5%)
6 (7.5%)

6 (7.5%)

43 (53.8%)

21 (26.3%)

1 Unknown
W 21-100%
0%
[161-80%
W 41-60%
[ 1-20%

W 21-40%

Total number of Sites with Mass Flux Data = 80

*From: Assessing the Feasibility of DNAPL Source Remediation: Review of Case Studies.

Naval Facilities Engineering Command, Contract Report (May 2004),
CR-04-002-ENV. Slide Courtesy of: Carmen Lebron, NFESC (2006)
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Performance of DNAPL
Source Depletion Technologies™

e Data for 147 wells at 59 DNAPL source depletion
sites were examined.

e Technologies included: Chemical Oxidation;
Enhanced Bioremediation; Thermal Treatment;
Surfactant/Cosolvent Flushing

e (Criteria: CVOC conc.; rebound; treatment duration

e At 11 sites for which data were evaluated,
“concentration reduction for a given mass reduction

was within 30% of the 1:1 relationship at most sites.”
[Note: This implies I'~1, and source longevity large].

e However, MCLs were not achieved & sustained
at all wells.

* McGuire, McCade, Newell, 2006. GWMR 26(1):73-84
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In-Situ Flushing & Changes in
Source & Flux Architecture®

e The contaminant flux architecture at the source
control plane (CP) is essentially invariant with
time.

e For DNAPL source zones cleaned up through 1n-
situ flushing, areas with high contaminant fluxes
remain high throughout the DNAPL mass depletion
process.

e The contaminant flux distribution at the source CP
gradually fades away with time.

*Details to be included in: Basu et al., 2006 (in preparation)
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Technology Integration:

Combined Uses as “enhancers” with other technologies

- Enhanced reduction
- Surfactants & cosolvents with ZVI (UF)
 Emulsified ZVI (Reinhart et al., 2003, 2006;
US Patents: 6,664,298; ?? (NASA)
- Enhanced oxidation

- Permanganate (LFR Levine Fricke, 2005;
US Patent 6,869,535; Purdue; Colorado School of Mines

- Enhanced Air Sparging (& SVE?)
* Kim et al.; UF: Purdue

 Electro-kinetically Enhanced Flushing
* Reddy & Saichek (UIC)
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Surfactant-Assisted Delivery
of Nano-Iron Particles

Targeting of the
NAPL-water
Interface

% Hydrophakic block
ﬁ Hydrophilic: block

Ry "Anchor block

Saleh et al. 2005 Nano Let.

= Courtesy of: Andrew Ramsburg, Tufts Univ.

Allaire and Ramsburg, 2006
unpublished

Delivery & Influence on
NAPL Architecture?

-

w 3
g |
1%

Ramsburg et al. 2004 JCH
eEncapsulation of
active ingredients has
been demonstrated.

*Design must consider

the stability of the
NAPL architecture
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Technology Integration:

Sequential Uses with other technologies
as “chasers” or “finishing” step

e Cosolvents/surtactants followed by reductive
dechlorination (UF, Michigan, Hill OU2,?)

e Surfactants followed by low level chem. ox
(Fenton) (B. Shiau, 2005, US Patent 6,913,419);
Surbec LNAPL sites (e.g., Golden, OK)

e Thermal followed by low-level
cosolvent/surfactant (primarily as e-donors)??

e Cosolvent/Surtactant flood followed by n-ZVI??
« 7}
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j o Integration of Remedial Technologies:

2 » Combinations, Sequencing & Optimization

e

L9

= ®
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PURDUE

Pre-Flood
Source Source Post-Flood
2 Management Removal Plume Management
N / Natural Attenuation
Free-phase
recovery Enhanced
Bioremediation
SVE/sparging In-situ I .
Physical Barriers > FlllShing< OPPATEIE
Pump and Treat
Pump and Treat
(hydraulic Permeable Reactive
Containment) / Walls
\Chemical oxidation

000000606
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Technology Implementation Challenges

Concerns about “uncontrolled migration” &
expansion of source zone

“Incomplete” cleanup (Compliance/Closure)
Hydrodynamic Access
Sweep Efficiency
Recovery/Reuse of “moditiers”
Costs & Competitiveness
Net Present Value
Cost-to-Complete
Scale — Which “niche” markets?
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Research Needs

- Defining DNAPL source treatment goals by
linking to benefits derived 1n the plume zone:
- How much source mass should be depleted to achieve

target source strength? (Mass reduction & Flux
reduction relationships; what 1s I value? Initial mass?)

* Where should mass depletion be targeted? Is cleanup of
“hotspots” sufficient? (Source & flux architecture
changes with remediation)

* What is the role of mass not depleted (diffusive fluxes
from low-permeability zones)?

* What is the required e-donor flux to enhance & sustain
plume attenuation?

* Importance of increased total VOC flux??
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«® Secondary effects

~ 9
=9
=9
R
_ @
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* Concerns about eco-toxicology

— Changes 1in microbial diversity & functions
— Increased BOD effects

* Concerns about human-health effects
— Safety issues (flammable?)

— Mobilization of metals (e.g., Fe, Mn under reducing
conditions induced by e-donor addition)

— Human-health effects of modifiers



